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Abstract: We introduce a methodology allowing to reduce and to compare systems
biology models. This is based on several reduction tools. The first tool is a
combination of Clarke’s graphical technique and idempotent algebra. The second
tool is the Karhunen-Loève expansion, providing a linear embedding for the
invariant manifold. The nonlinear dimension of the invariant manifold is estimated
by a third method. We also introduce a novel, more realistic model for NFκB
signaling. This model is reduced and compared to existing models.
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1. INTRODUCTION

Model reduction techniques are used to pro-
duce small, but still accurate models, from larger
ones. In systems biology, model reduction meth-
ods were applied to signal transduction models
(Conzelmann et al., 2004) and to clocks (Indic et
al., 2006).

There is a need for general, eventually autom-
atized, reduction methods. We may distinguish
among three classes of model reduction tech-
niques. Trajectory based techniques use the in-
tegration of the dynamical equations and look
for a small number of reduced variables. The
empirical orthogonal eigenfunctions (EOF), also
called Proper Orthogonal Decomposition (POD),
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or Karhunen-Loève expansion (KL) method, con-
sists in finding a low dimension linear space, con-
taining (or sufficiently closed to) the trajecto-
ries. Singular perturbations techniques eliminate
fast variables whose dynamics is slaved by the
slower variables. This is equivalent to finding a
lower dimensional, invariant manifold, contain-
ing the dynamics. Invariant manifolds methods
have been applied to chemical kinetics (Gorban
et al., 2004). Graph contraction methods such
as Clarke’s (Clarke, 1992) replace the reactions
mechanism by a simpler mechanism in which some
intermediate species are absent.

There are many reasons for simplifying systems
biology models. Models contain unnecessary com-
plexity which conceals design principles, and ren-
ders analysis difficult. Sensitivity studies, critical
parameters and regulation loops identification be-
come easier for reduced models. To find common



patterns (model comparison) models should be
simplified to a common level of complexity.

In this paper we show how models of NF-κB
signaling system can be simplified.

The transcription factor NF-κB has been discov-
ered 20 years ago, and is still in the spotlights.
NF-κB is involved in a wide diversity of domains
such as the immune and inflammatory responses,
cell survival and apoptosis, cellular stress and
neuro-degenerative diseases, cancer and develop-
ment. NF-κB is sequestered in the cytoplasm by
an inactivating protein, IκBα. When cells receive
the appropriate signals, IκBα is phosphorylated,
which triggers its ubiquitinylation, and which tar-
gets the molecule for degradation by the protea-
somal complex. NF-κB that is bound to IκBα
is released in the cytosol, then actively trans-
ported to the nucleus where it activates its target
genes. Understanding such a complex biological
system requires modeling. In the last years, sev-
eral mathematical models of NF-κB have been
published. The first model describes a single NF-
κB molecule, which binds to IκBα, IκBβ and
IκBε. This work lead to the demonstration of
oscillation in NF-κB activity, confirmed by exper-
imental data (Hoffmann and al., 2002), oscillation
which is made possible by the feed-back loop of
IκBα activated by NF-κB and inhibiting it. The
model set by (Lipniacki et al., 2004) takes the
same approach, and adds to the complexity by
modeling in addition the A20 molecule whose pro-
duction is enhanced upon NF-κB stimulation, and
which negatively regulates IKK activity. A third
model analyzed the critical parameters necessary
for maintaining oscillations, with given amplitude
and frequency (Ihekwaba and al., 2004).

With the goal to better render the complexity
of the NF-κB system, and to fit more to reality,
we propose a fourth model with more complex
description that takes into account transcription,
translation and degradation of NF-κB. We also
describe the production of the different NF-κB
subunits, p50 which is cleaved from the p105 mole-
cule, and the combinatorial possibilities between
p50 and p65, which leads to the formation of
p50.p65, p50.p50 and p65.p65. These dimers of
NF-κB are characterized by different affinities for
DNA sites, and associate differentially to IκBα,
β and ε, generating thus 9 species with different
proportion and characteristics upon signalling and
degradation.

2. METHODS

2.1 Models

We consider chemical kinetics models of the form:
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Fig. 1. Model M(39, 67, 88): red reactions are
reversible, red arcs mean consumption, blue
arcs production.
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Fig. 2. Models M(14, 27, 36) and M(6, 9, 13)



dX

dt
= SR(X) =

m∑

i=1

SiRi(X) (1)

where X ∈ Rn is the vector of concentrations of
different species, S is the stoichiometric matrix.
Each column of the stoichiometric matrix Si cor-
responds to an elementary reaction.

Like in (Lipniacki et al., 2004) we use a two-
compartment approximation to cope with translo-
cation between nucleus and cytoplasm. This
amounts to considering reactions with non-integer
stoichiometry: nuclear influx reactions have the
stoichiometry (. . . ,−1, . . . , kv, . . .) where the real
number kv is the ratio between the volumes of the
cytoplasm and the nucleus.

2.2 Clarke’s reduction method

Let I be the set of intermediate species, that
will be eliminated in the reduction procedure.
R(I) is the set of reactions that either produce or
consume some species in I. S(I) is the restriction
of the stoichiometry matrix to I. All other species,
different from I and involved in reactions R(I) are
called terminal. A reaction route is any integer
coefficient vector γ that satisfies:

S(I)γ = 0, γi ≥ 0, if Ri ∈ R(I)is irreversible (2)

A submechanism is made of all reactions in the
reaction route (reactions of indices i such that
γi 6= 0). A submechanism that does not contain
a smaller submechanism is called simple. Simple
mechanisms are analogue to elementary modes
from flux balance analysis (Gagneur and Klamt,
2004).

The simplification method replaces R(I) by its
simple submechanisms. The rates of the submech-
anisms are obtained from the quasistationarity of
the intermediates (at imposed terminal concen-
trations). The resulting rates are functions of the
concentrations of the terminal species only. By
this procedure the steady states of the simplified
model can be perfectly imbedded in the steady
states of the original model. Although it presents
some dangers (it eliminates some time delays that
can affect the stability of limit cycles), the method
works well in networks with hierarchical time
scales. In such networks a few variables dictate
a simple dimensional dynamics. Other variables
are either much more rapid (and are slaved by
the simple dynamics) or are much slower (and
modulate the simple dynamics).

2.3 Limit simplifications and idempotent algebras

Even supposing that elementary reactions follow
mass action law kinetics, the reduced rates are
complicated functions of the concentrations. More
seriously, the decrease of the number of parame-
ters is rather limited in this approach. A much
more efficient reduction method is to use idempo-
tent algebras in order to simplify rate functions.
This consists in keeping only the dominant terms
in polynomial expressions of the rates. Polynomi-
als become monomials or sums of few monomials.
We call the models thus obtained limit simplifica-
tions.

A simple example of limit simplification is the min
funnel. The min funnel combines two molecules
to form a complex. The molecules are produced
with rates R1, R2 and are degraded with constants
kdeg1,kdeg2. The complex formation is a reversible
reaction with constants kc, k

′
c. Ignoring losses in

the funnel min(R1, R2) >>
kdeg1kdeg2

kc
and con-

sidering that the complex C does no accumulate
in huge amounts at the funnel exit (the order of
k′cC is at most the order of R1,R2) we obtain the
following limit simplification for the production
rate of the complex: RC ≈ min(R1, R2).

2.4 PCA (Karhunen-Loève expansion) for “flat”
dimension

The dynamics of models that we present in this
paper is close to a limit cycle, embedded in the
multidimensional space of species concentrations.
However, effectively it may be located on a low-
dimensional linear manifold. One efficient method
allowing to detect the low-dimensional linear man-
ifold is the Principal Component Analysis (PCA)
also known as Karhunen-Loève expansion.

PCA allows to calculate a new orthonormal basis
in the concentration space such that the vectors
of this new basis are ordered with respect to the
species variation measured in the corresponding
directions. New basis vectors are eigenvectors of
the covariance matrix calculated for discretized
system trajectory (represented in the phase space
as a finite number of “snapshots”). The explained
variation is quantified by the distribution of the
corresponding eigen-values. The simplest method
of giving “reduced” description consists in taking
first k eigen-vectors such that the cumulative
variation explained (relative sum of the first k
eigen values) would exceed a certain threshold (for
example, 95% of the total variance).

2.5 Estimating the “nonlinear” dimension

The approach that we use is based on a local
version of PCA, with several ideas taken from



(Hundley and Kirby, 2003; Solis, 1999). It consists
of two steps: sampling the invariant manifold and
estimating the (local) dimension of the manifold.

We estimated the local dimension of a manifold
M in point c ∈ M where the manifold is sampled
in a finite number m of vectors Xi, i = 1..m.
Following (Hundley and Kirby, 2003), one can rely
on the fact that in some vicinity of c the manifold
M can be approximated by a linear expansion.
The effective dimension of this expansion can be
estimated using local variant of PCA. For an ε-
ball around c, Bε(c) = {Xi : ‖Xi − c‖ < ε},
we calculate the principal components for Xi ∈
Bε. The functions of the corresponding eigen-
values λk(ε) on the value of ε are called singular
value curves (SVC). It can be shown that in
the case of k-dimensional manifold with uniform
sampling in the limit of many samples one should
have exactly k SVCs of the form λ(ε) = 1

k+2ε2.
All other λ(ε) functions should have different
scalings (proportional to ε4, ε6, etc.) This result is
difficult to use directly because in practice it is not
possible to provide uniform and sufficiently dense
sampling, and the sampling is often spoiled with
noise. We found that a better choice is to estimate
the local dimension of the invariant manifold as
a number of linearly scaling at ε = 0 functions
σ(ε) =

√
λ(ε), with the largest slopes separated

from the others by a “spectral gap”.

3. RESULTS

3.1 Hierarchical reduction of the model

As an illustration, we reduce a simpler version
of our model (that employs only one member of
the IκB family, namely the IκBα, which is the
most important) towards the model proposed by
Lipniacky (Lipniacki et al., 2004). After that, we
continue the reduction procedure towards even
simpler models, thus obtaining an hierarchy of
models. The complexity of a model is quantified
by a triplet of positive integers (n,m, p) (num-
bers of species, reactions, and parameters). In
the unreduced model, elementary reactions follow
mass action law kinetics. Thus, each reversible
reaction involves two kinetic parameters and each
irreversible reaction only one. Another parame-
ter is kv, the cytoplasm to nucleus volume ratio.
Thus, the unreduced model isM(39, 67, 88) (there
are 39 species, 67 reactions, among which 20 are
reversible). Lipniacky’s model isM(14, 27, 29) (all
reactions are irreversible, but the conserved total
NF-κB stands for a new parameter).

The reduction fromM(39, 67, 88) toM(14, 27, 29)
is performed in 5 steps. The first three steps cor-
respond to limit simplifications of the mechanisms
producing the proteins p50, p65, and the mRNA

for IκBα. Thus, the reactions R41−46, R32−39,
R63−70, R48−51, R55−62 are replaced by the simple
submechanisms ∅ → p65, ∅ → p50, ∅ → mR-
NAIkBa, with the rates:

R45 ≈ k43k45

k46
[Prop50], (3)

R39 ≈ k36k34[Prop105]
k37(1 + k64x7

k68
)

, (4)

R26 ≈ [ProIkB]
k50 + k′58x7

k′56k′58+k60k58x11

1 + k56
k60

x7

(5)

where x7 = [p50p65n], x11 = [IκBn].

The fourth step is a min funnel simplification of
the production of p50p65. R39, R45 are replaced
by R52 ≈ min(R39, R45) = R39.

In the fifth step, we use two time scale averaging to
replace the non-conservative model by a conserv-
ative model. Without the reactions R52, R53, R54,
R71, R72 that produce and consume p50p65, the
total amount of p50p65 (free or complexed with
other species) would be conserved. Considering
that the reactions R53, R54, R71, R72 have the
same constant k, the total amount X of p50p65
satisfies the equation :

dX

dt
= −kX + R52 (6)

R52 depends on [p50p65n] and weakly on [IkBn].
During the accumulation of p50p65, the dynam-
ics has two time scales, with the slow timescale
(about 10 h) controlled by Eq.6 and the rapid
timescale controlled by the oscillations of the
model (period 1-2 h). An averaging argument
allows us to estimate the asymptotic amount of
p50p65: X∞ =< R52 > /k, where the average is
over a period of the oscillations for sustained os-
cillations or the value at steady state for damped
oscillations.

Thus, the fifth reduction step consists in elimi-
nating the reactions R52, R53, R54, R71, R72 and
using as initial condition for the total amount of
p50p60 the asymptotic value X∞ that becomes
a parameter of the reduced model. We obtain the
modelM(14, 27, 36) that has the same species and
reactions as Lipniacky’s model M(14, 27, 29), but
slightly more parameters. The difference in the
number of parameters comes from the more com-
plex expressions of the mRNA IκB transcription
rate R26 (this rate is a function of x7, x11 and
four parameters in M(14, 27, 36) as in Eq.5 and
is simply R26 = k26x7 in M(14, 27, 29)) and from
the fact that in M(14, 27, 36) four reactions are
reversible.

Although the reversibility of some reactions is
not really an important difference, the two ex-
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Fig. 3. Visualization of components of first two principal vectors calculated in concentration space.
Grouped species oscillate “in-phase” on the limiting trajectory. Signal was applied at t=40h.

pressions for R26 are sufficiently different to dis-
tinguish the two models. To compare the dy-
namics we have chosen a parameter k26 =

k′58P3

(k′56k′58+k60k58<x11>)(1+
k56
k60

<x7>)
for which we ex-

pect comparable rates R26 for average values of
x7,x11, in the two models.

Three more reduction steps transformM(14, 27, 29)
intoM(6, 9, 13). The kinase transformations reac-
tions R1−11 are replaced by two submechanisms
IkBa → ∅, IkBp50p65 → p50p65, of rates:

R21 ≈ [k21 +
k3k7

k5 + k4x8
]x20 (7)

R12 ≈ k3k9

k5 + k4x8
x13 (8)

where x10 = [IκB], x8 = [A20], x13 =
[IκBp50p65].

A20 production can be simplified to ∅ → A20,
with the rate:

R20 =
k16k20x7

k17
(9)

The nuclear complex formation reactions R14,
R23, R28 are replaced by IκBα + kvp50p65n →
IκBp50p65, with the rate:

R14 =
k23k14

kvk24 + k14x7
x10x7 (10)

Sensitivity analysis shows that reactions R21, R25

have little influence on the oscillating behavior of
the model. The same is true about the reversibility
of R13−14, R15. This leads us to the simplest
model M(6, 9, 13).

3.2 Model comparison and dynamical dimension

Model 80% 95% 99% 99.9% 100%

M(39, 67, 88) 2 4 6 8 15
M(14, 27, 36) 3 4 6 7 11
M(14, 27, 29) 2 3 4 5 9
M(6, 9, 13) 2 3 4 4 5

Table 1. Dimensions of linear manifolds
embedding the limiting trajectories for
various “explained” variance threshold.

All reduced models have oscillating behavior. Al-
though sustained oscillations were not observed in
biological experiments, the NF-κB system unde-
niably functions close to a Hopf bifurcation. One
can pass from damped to sustained oscillations
by changing X∞ (lowering it produces damping).
We used the limit cycle ideal behavior to compare
models. We found little qualitative differences
among reduced models (Fig.3). Using the PCA
analysis we conclude that the effective dimension
of linear manifolds containing the trajectories is
low and does not change much by model reduc-
tion (Table1). The dynamics of the most complex
model is not more dimensional than the reduced
model M(14, 27, 36) at 99%. The same is true if
we compare M(14, 27, 29) and M(6, 9, 13).

However, one simplification of the system (lin-
earization of the transcription rate R26 of IκB
mRNA as function of nuclear p50p65, i.e. tran-
sition from M(14, 27, 36) to M(14, 27, 29)) gives
drastic decrease of linear dimension. The reason
for this should be looked for in the distribution
of timescales for the two models. Although the
period is similar, the duration of the peaks is
quite different. In our model the inhibitor x11

relatively quickly turns down the transcription
rate (see Eq.5) and reduces the duration of the
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peaks. In Lipniacky’s model this effect is not taken
into account and the duration of the peaks is
longer (Fig.3). Hence, several rapid modes that
can be reduced without loss for this model (kinase
complexification and nuclear complex formation),
can not be reduced for our model.

The nonlinear analysis confirms these findings.
From Fig. 4 it follows that in models M(6, 9, 13)
and M(14, 27, 29) there exists a well defined non-
linear two-dimensional invariant manifold, but not
in the other models. One can estimate the local
dynamics dimension to be 3 for M(14, 27, 36)
and about 5 for M(39, 67, 88). To illustrate the
existence of a two-dimensional invariant mani-
fold, we present a sampling produced for the
model M(14, 27, 29) on Fig. 4, where the distri-
bution of dynamical “snapshots” is approximated
by the elastic principal manifold (Gorban and
Zinovyev, 2005).

4. CONCLUSIONS

Our approach generated an hierarchy of mod-
els of various structural complexity. The model
M(14, 27, 36) obtained by reduction from our
most complex model M(39, 67, 88) has precisely
the same set of molecular species and biochemical
reactions as the existing M(14, 27, 29) (Lipniacki
et al., 2004). We spotted the differences between
these models and identified their origin. Using the
dimension of the invariant manifold as a criterion,
we showed that our model has higher dynamical
complexity. We also showed that M(14, 27, 29)
permits a series of simplifications. Although these
do not lead to the simplest dynamical dimension
(which is 2) they allow to sort biochemical reg-
ulations according to their effects on dynamics.
For our model we can mention the importance
of IκB-induced detachment of NF-κB from DNA
(reaction R58, R60). As seen in Eq.5, this effect is
the main modulator of mRNA IκB transcription
rate. By eliminating R58, the limit simplification
changes and the oscillation period doubles. These
reasonings are crucial for designing experiments
to test the validity of different models and the
relative roles of various regulations.
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