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Abstract
We review several mathematical methods allowing to identify modules and hierarchies with

several levels of complexity in biological systems. These methods are based either on the properties
of the input-output characteristic of the modules or on global properties of the dynamics such as
the distribution of timescales or the stratification of attractors with variable dimension. We also
discuss the consequences of the hierarchical structure on the robustness of biological processes.
Stratified attractors lead to Waddington’s type canalization effects. Successive application of the
many to one mapping relating parameters of different levels in an hierarchy of models (analogue to
the renormalization operation from statistical mechanics) leads to concentration and robustness of
those properties that are common to many levels of complexity. Examples such as the response of
the transcription factor NFκB to signalling, and the segmentation patterns in the development of
Drosophila are used as illustrations of the theoretical ideas.

1 Introduction

Complex systems in molecular biology have been often compared to electronic devices [HHLM99].
This picture is tightly related to the concepts of genetic and metabolic networks and circuits. Mole-
cules inside the cell are ”wired” in complex circuits as the result of mutual interactions. Modules
contain several molecules and perform well defined functions. The design of a cell could be similar
to the design of electronic circuits where several modules are combined to function in a well defined
way. As argued by [HHLM99], modules definitely exist. The question is whether everything in
molecular biology is modular. If the answer is yes, then there should be ways to identify all the
modules in the cell wiring. Furthermore, we need to known which are the consequences of modular-
ity. Several questions are important. Are the properties of a system functions of the properties of
modules? Should the modelers shift from the molecular level to the modular one in the description
of cell’s functioning? Which are the mathematical methods to perform this shift?

In fact, it is not easy to go beyond the first enthusiastic ideas about modules. The simplest ques-
tions such as defining and identifying modules are in fact highly non-trivial. Graph representations
of cellular molecular interactions suggest that one could use topological criteria such as connectiv-
ity in order to identify modules: modules could be highly connected sub-graphs. Combined with
additional biochemical conditions these methods were applied to decompose metabolic networks
into modules [SPM+02]. Nonetheless, connectivity arguments can lead to hasty conclusions. For
instance, in metabolic networks there are molecules (such as ATP) that take part into many re-
actions. It is nevertheless artificial to put all the ATP controlled reactions into the same module.
It is more realistic to define modules as motifs with useful dynamical properties [SK04]. However,
finding which properties of a motif are useful for the system in which it is contained, is a difficult
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task. In practice, methods to find such motifs are based on counting repetitions and are limited to
small motifs [SOMMA02]. Furthermore, the principle of a few types of frequent building units does
not apply to all levels: bigger modules are more specialized and less frequent.

In biological systems, modularity is intrinsically related to hierarchical complexity [Lev70]. An
hierarchical model defines several levels of complexity. Going up and down these levels of complexity
implies reduction operations that lump together variables and parameters [GK05, Ga04]. This many
to one relation between several levels of complexity is probably a better approach to modularity.
Modules are defined by the groups of variables and parameters in one level that are lumped together
and provide the atoms of the next level of complexity. Using this picture the definition of modules
is more flexible. There is no unique way to lump variables: this may depend on modeler’s choice
and on the type of property under study. Hierarchical models could include the more or less well
defined levels molecule - cell - tissue - organ - organism but also other levels such as regulation
motifs and pathways, groups of interacting motifs and pathways, etc. These more flexible and more
poorly defined subdivisions of biological systems could be dynamical and context dependent. It has
been suggested that functioning of a cell is highly contextual [AIRRH03]. By integrating signals of
various origins, cells are able to compute their response and to activate various combinations of their
subsystems. These aggregates are dynamically transient and serve to lead from one stable behavior
to another one. This picture is coherent to biologists’ remark that living systems operate in spaces
with a changing number of dimensions and that it is important to determine the correct number of
dimensions [AIRRH03].

Recently, many authors reported the existence of robustness in the functioning of biochemical
networks [vDMMO00, MWB+02, KOK+04, Kit04, Wag05, HWL02]. Historically, C.Waddington
and R.Thom relate robustness to structural stability [Tho84, Wad57]. We shall argue that the
modularity and the hierarchical nature of biological networks have consequences on their robust
functioning. This is connected both to structural stability and to the complexity of the system.

2 Models

The models we shall use as examples are of the two types. One type of models is based on networks
of biochemical reactions.

The dynamics of the network is described by:

dX

dt
= f(X,λ) = SR(X, λ) =

m∑

i=1

SiRi(X,λ) (2.1)

where X ∈ Rn is the concentration vector, R(X, λ) ∈ Rm gives the reaction rates depending on
the concentrations and some parameters λ, S is the stoichiometry matrix whose vector columns are
Si, f : Rn → Rn is the non-linear function relating concentrations and concentration rates.

There are two graphical representation that can be associated to these networks. The first one
is an oriented bipartite graph with two types of nodes (reactions and molecules). To each reaction
node point arcs from reactants and from each reaction node start arcs to the reaction products.
The second one is the interaction graph, which is a signed oriented graph (G,A, s) whose set of
vertices G include all the molecules in the model and whose arcs are defined by the Jacobian of
the rate function f . An arc connects a pair of vertices (i, j) ∈ A iff ∂fj

∂Xi
6= 0. The sign function is

defined as s(i, j) = sign
∂fj

∂Xi
. The interaction graph may depend on the position in the phase space.

Nevertheless, there may be domains in the phase space where the interaction graph is stable.
The second type of models has been used in morphogenesis [RS95] and is similar to the Hopfield

model from neuroscience.
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dxi

dt
= σα(

n∑

j=1

Kijxj +
p∑

k=1

Jikmk(y)− hi)− λixi, (2.2)

where xj are zygotic genes concentrations, K is a matrix describing pair interaction between
zygotic genes, J is a matrix describing pair interaction between zygotic genes and maternal genes,
hi are thresholds, mi are functions of the spatial position y which define maternal gene concentrations
(morphogen gradients). Here σα(h) = σ(αh), σ is a monotone ”sigmoidal” function. The function
σα becomes a step-like function as its sharpness α tends to ∞.

An interaction graph can be defined for this type of model similarly to the previous type. The
interaction graph does not depend on the point in the phase space. This graph is simply defined by
the constant matrix K.

3 Modules

Given a model, we want to decompose it into sub-models (modules) that behave in a simple way
and that have good compositionality properties. In this section we present two of the many possible
choices.

3.1 Select modules by input-output response

It is rather handy to treat modules as black boxes. A black box has a certain number of input
variables and a certain number of output variables. We want to relate outputs to inputs. To do
that we first need some definitions.

The mathematical key concept here is the graph boundary [RLS+06]. The orientation of a graph
defines a flow T , which applies nodes onto their successors j = T i, iff (i, j) ∈ A. Any subset S of
an oriented graph (G,A) has an entrance boundary and an exit boundary. The entrance boundary
of S, denoted by kinS is the set of nodes of S that are images by T of points from G \ S. The
pre-entrance boundary is the set T −1kinS. The exit boundary of S, denoted by koutS is the set of
nodes of S that lead by T to the exterior of S. Notice that this definition uses only the concept of
interaction graph, therefore it applies to the both types of models described in the preceding section.

Let us decompose the node variable X = (X ′, X”), where X ′ and X” are the components of X
on the interior of S and on the entrance boundary of S respectively. S being a set of molecules, X”
represents the concentrations of molecules that receive direct influences from the exterior of S, and
X ′ represents the concentrations of molecules in S not receiving direct influences from the exterior.

In [RLS+06] we introduced the Dirichlet nonlinear problem, which means calculating X ′ from
X” at steady state. The solution of the Dirichlet nonlinear problem represents the Dirichlet static
input-output response of the module. It is obtained by imposing stationarity to all the interior
nodes:

fi(X ′, X”) = 0,∀i ∈ S̊ (3.1)

Let us change the decomposition X = (X ′, X”), where now (X ′, X”) are the components of X
on S and on the pre-entrance boundary of S, respectively. In analogy with the theory of electric
circuits we can also state the Neumann nonlinear problem, that means imposing stationarity to all
the nodes of S:

fi(X ′, X”) = 0,∀i ∈ S (3.2)

The Dirichlet static input-output response of S is a function ΦD : Rnin → RnS−nin giving the
values on S̊ as functions of values on kinS at stationarity. Hence, X ′ = ΦDX” satisfies Eq.(3.1).

3



Similarly, the Neumann static input-output response is a function ΦN : Rnpre → RnS giving the
values on S as functions of values on T −1kinS at stationarity. Hence, X ′ = ΦNX” satisfies Eq.(3.2).

3.1.1 Gale-Nikaido vs monotone boxes

The existence and uniqueness of the Dirichlet and of the Neumann static input-output responses
are given by the following theorems [RLS+06, RSPL]:

Property 1 (Existence condition)
Let us consider that fi(X ′, X”) = Φi(X ′, X”)−λiX

′
i where λi > 0 and Φi(X ′, X”) are differentiable,

bounded and satisfy
Φi(. . . , X ′

i = 0, . . . , X”) > 0 (3.3)

Then for any X” the system (3.1) (or (3.2)) has at least a solution X ′ such that all the concen-
trations X ′

i are positive.

Property 2 (Uniqueness condition, Gale-Nikaido)
With the same notations as in Property 1 let us define the restricted Jacobian matrix J̃ such as

J̃ij = ∂fi

∂X′
j
, i, j ∈ S̊ (or, for the Neumann problem i, j ∈ S). Let us consider that all the principal

minors of −J̃ are positive for any X. Then, the system (3.1) (or (3.2)) has an unique solution X ′

for any X”.

Property 2 is a direct consequence of the Gale-Nikaido theorem [Par83].
Notice that our notion of system with unique input-output response is weaker than the one in

[AS03]: we do not require stability of the solution of the Dirichlet or of the Neumann problem.
Generically, stability is a global property of the system that is not automatically ensured by the
stability of the modules.

Boxes with unique input-output response have been used to prove the uniqueness of the steady
state of a model of lipid metabolism in hepatocytes [RSPL].

An alternative decomposition has been proposed elsewhere [Ka02, AS03, AFS04, ESS06]. It
consists in decomposing the system into monotone boxes. For a monotone box, the restricted
Jacobian satisfies J̃ij > 0, ∀i 6= j or more generally, the undirected interaction graph has no negative
loop.

Notice that the monotonicity and the Gale-Nikaido conditions are somehow complementary. The
Gale-Nikaido condition is implied by (but largely more general than) the absence of positive loops
in the interaction graph. Monotonicity excludes negative loops.

Gale-Nikaido modules and monotone modules have nice compositionality properties. For monotonic
modules with stable input-output response, the stability of the global system follows from a small
gain theorem [AS03]. Using Gale-Nikaido modules we can obtain conditions for uniqueness of the
steady state of the global system [RSPL]. Furthermore, input-output responses of the modules can
be combined in order to obtain the response of the global system [RSPL].

The possibility of separating large Gale-Nikaido boxes seems to be limited by the presence of
positive loops in the interaction graph. This is not entirely true. In networks of biochemical reactions
many positive reaction loops do not produce multistationarity. Therefore, it is relatively easy to
find large Gale-Nikaido boxes. In order to illustrate this phenomenon let us consider a positive
cycle made of two reactions whose rates R1, R2 are functions of the concentrations X and Y . Let
us consider that all the other reactions producing X (Y ) have rates R̃1 (R̃2) not depending on Y

(X). Furthermore by le Chatelier principle ∂R̃1
∂X , ∂R̃2

∂Y , ∂R1
∂Y , ∂R2

∂X are negative and ∂R1
∂X , ∂R2

∂Y are positive.
Then the Jacobian restricted to X,Y is:
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J =

(
∂R̃1
∂X + ∂R2

∂X − ∂R1
∂X

∂R2
∂Y − ∂R1

∂Y
∂R1
∂X − ∂R2

∂X
∂R̃2
∂Y + ∂R1

∂Y − ∂R2
∂Y

)
(3.4)

Positive loops tend to make the determinant of J negative, that would break the Gale-Nikaido
condition. It can be noticed that the effect of the positive loop (terms (∂R1

∂X − ∂R2
∂X )(∂R2

∂Y − ∂R1
∂Y ))

exactly cancels in the determinant of J . This determinant is always positive. A similar argument
can be used to prove that modules with even larger positive reaction loops satisfy the Gale-Nikaido
condition.

Figure 1: Positive cycle in the reaction graph does not break the Gale-Nikaido condition.

3.1.2 Hierarchical modules and the block triangular structure of the Jacobian

Levins [Lev70] discussed a situation that leads naturally to separation of modules. He studied the
stability and the timescales of a biological system (estimated from the real parts of the eigenvalues
of the Jacobian J).

Let us consider the situation when the nodes in the interaction graphs can be grouped in layers,
such that nodes in one layer collect influences from each other and from the nodes of the superior
layer. In this situation the Jacobian has a block triangular structure. Hence, its characteristic
polynomial is the product of of the characteristic polynomials of the layers. This fact have several
consequences: a) Asymptotic stability of the steady states of the layers implies asymptotic stability
of steady states of the system. b) Relaxation timescales of the system are simply the union of
relaxation timescales of the layers.

Levins’ argument for this block triangular structure of the Jacobian is the absence of evolutive
pressure to select long cycles: these would produce longer transition times [Lev70]. This argument
seems to be supported by recent work emphasizing the relative paucity of long cycles in metabolic
networks [GSWF01]. Another argument is based on the hierarchical distribution of timescales. Let
us consider that nodes of the interaction graph can be grouped in such a way that relaxation times
of different groups are well separated τ1 << . . . << τn << τn+1 << . . .. We may for instance (like
in [GR05]) consider that the distribution of timescales is uniform in logarithmic scale. Nodes in
a group interact with nodes inside the same group, and with nodes that are in much slower or in
much quicker groups. For the chosen group the values of the variables in the much slower groups
can be considered to be constant and the interactions with these groups are not effective. We can
then safely consider that the Jacobian has a block triangular structure.

This suggests that timescales can be used to define modules by grouping together nodes whose
variations have comparable timescales. The choice of the groups of nodes can be made experimentally
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by using time series data. Also, various techniques (for instance computational singular perturbation
[LG94]) were developed in chemical engineering for classifying degrees of freedom according to
timescales in a given chemical reaction model. Using well chosen projectors the contributions of
different nodes to these degrees of freedom and the stratification of the nodes according to the
timescales can be found [MDMG99].

3.2 Modules and stratified epigenetic landscapes

Potentially, biological networks have huge complexity. Mammals posses 105 genes and the number
of interactions among these is much larger. One gene can interact with many others by many
transcriptional and post-transcriptional regulation mechanisms. This tremendous complexity is
used to produce no more than 300 distinct stable cellular types. In fact, in order to understand
basic cell functioning it is useless to consider the entire set of genes. Dynamical complexity can be
reduced and simplified descriptions are justified.

Obviously one gene does not interact with all the others all of the time. Most of the time, most
of the genes are close to stable values that can be either low (silenced) or high (activated). For the
Hopfield type model 2.2 let us define the following subsets of genes that are ”on” and ”off”:

Son(t) = {i|xi(t) > xmax
i − ε}

Soff (t) = {i|xi(t) < ε} (3.5)

where ε is a small positive number.
The rest of the genes have dynamically transient values, meaning that they evolve between a

minimum and a maximum value.

Sdyn(t) = G \ Son(t) ∪ Soff (t) (3.6)

The dynamical complexity is given by the number of transient genes ndyn(t) = #Sdyn(t).
Cell’s functioning is based on interpretation of signals. Signals carry information on changes of

the environment and guide important processes such as differentiation, proliferation, apoptosis. The
usual behaviour of ndyn(t) following a signal is represented in Fig.3.2.

Typical examples when signal processing produces reliable behavior can be found in the biology
of development. Canalization meaning robust development and chreod meaning ”fated” develop-
mental pathway are central concepts in Waddington’s theory of development [Wad57]. René Thom
[Tho84] interpreted the concept of chreod in mathematical terms as structurally stable dynamics.
We say that a dynamics is structurally stable if its qualitative properties do not change when pa-
rameters have some, small variations. In Thom’s theory of morphogenesis both stable regions and
organizing instabilities are important, shapes and patterns being the result of the conflict of several
attractors. What is no so clear in this picture is how this works, how and why one attractor wins
against another one, what guarantees the reproducibility and the robustness of the result. In par-
ticular Waddington’s remark that ”in the development of any one organ very many genes may be
involved, and in canalized epigenetic systems we are probably confronted with interactions between
comparatively large numbers of genes” [Wad57] seems to be in conflict with the increase (for an ”av-
erage” network) of the number of attractors when the number of genes increases (for random boolean
networks the average number of attractors grows linearly with the size of the network [Ald03]).

The genes in Sdyn(t) define a dynamical module that changes in time. The restriction of the
dynamics to Sdyn(t) defines a epigenetic landscape that changes in time. If the function σ is smooth,
there are discrete times t1 < t2 < . . . < tn < tn+1 < . . . such that the set Sdyn(t) is stable for
tn ≤ t < tn+1. Let us also define the set S(t) = ∪0≤s<tSdyn(s). S(t) keeps a track of all genes that
have changed or are still changing.

6



0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

x4

x5

x1

x5

x2 x3

x4

0 2 4 6

0

0.2

0.4

0.6

0.8

1

time

x

0 2 4 6
0

1

2

3

4

5

time
n dy

n

x1

x2,x3

x5(x4)

x4(x5)

0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

x4

x5

x1

x2 x3

x4 x5

0 2 4 6

0

0.2

0.4

0.6

0.8

1

time

x

0 2 4 6
0

1

2

3

4

5

time

n dy
n

x1

x2,x3

x5

x4

a) b)

Figure 2: A simple example of signalling network a) non-canalized (small perturbations deviate the
dynamics towards states where either x5 or x4 is on); b) canalized (in the end state x5 is on).

The time arrow defines a stratification of the dynamical modules. When these modules change at
times tn, previously transient genes provide the initial data and boundary conditions for the actual
transient genes. Canalization means that epigenetic landscape is simple at all times. This could
mean that ndyn(t) stays small for all times, but it may also mean that attractor basins of variable
dimensions of the genes in the increasing set S(t) are embedded one into another like Russian Dolls.

In Fig.3.2 we have represented the dynamics of two networks. Initially all genes are off, then a
signal is applied to x1. The networks evolve to some overall attractor of the five dimensional dy-
namics. Nevertheless, only the network b) is canalized. In situation a) first the epigenetic landscape
implying genes x1,x2,x3 is simple: it has an unique globally stable attractor. At a certain moment
genes x2, x3 are on and act as boundary conditions for the subsystem made of two genes x4, x5.
The dynamics is structurally unstable: by symmetry initial data lies on the boundary between two
attractors. Small perturbations can deviate the trajectory towards one or the other of the two
attractors. In situation b) this is avoided by an asymmetry of the interactions. In this case the
epigenetic landscape is simple at all the times. The attraction basin of the subsystem x1, x2, x3 is
embedded in a higher dimensional attraction basin of the entire network.

Notice that the sequence tn, n ≥ 1 and the values of Sdyn(t) on tn ≤ t < tn+1 may depend on the
value of the small parameter ε. Some stability properties of the dependency of these sequences on ε
could be obtained for systems with well defined time delays. For instance in Fig.3.2 the activation
of the nodes x2, x3 comes after the activation of x1 and the latest active genes are x4, x5.

4 Hierarchies and model reduction

4.1 Hierarchies

Hierarchies with various levels of complexity reproduce the organization of biological systems. How-
ever, hierarchies are also the natural result of the modeling activity itself. A model is an abstraction
of reality that includes a certain number of parameters and variables. The level of complexity chosen
for the model depends on the experimental needs and also on modeler’s culture. Thus, a biologist
will include as much variables as possible, a physicist is more inclined to produce minimal models
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with small number of variables. Several questions are important here. How to compare different
models in the hierarchy? Which is the minimum level of complexity one needs to consider?

4.2 NFκB: a model system

We shall use as an illustration the dynamical response of the transcription factor NFκB to a signal.
This system is one of the most documented cellular phenomenon and it has been modeled by various
authors [Ha02, La04, Na04, Ia04].

Under normal conditions NFκB forms a complex with its inhibitor IκB. This complex is trapped
in the cytosol and prevents NFκB from entering the nucleus. A signal (modeled by a kinase) frees
NFκB from IκB (the latter is degraded). Inside the nucleus NFκB controls the transcription of many
genes. Among these, it upregulates its inhibitor IκB. Experiments show that for a persistent signal
the steady concentration of NFκB in the nucleus is reached with more or less damped oscillations
[Ha02, Na04].
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Figure 3: Hierarchy of four simple models of NFκB signaling module represented as bipartite graphs. The
increasing complexity is quantified by the number of molecules and the number of reactions (the simplest
model M1(3, 4) has 3 types of molecules and 4 reactions). Squares represent reactions, circles molecules.
Numbers on arrows represent stoichiometries (by default 1). The molecular types are as follows S=signal
(a kinase), 1=IκBc, 2=NFκBc, 3=IκB-NFκBc, 4=NFκBn, 5=IκBn, 6=IκB-NFκBn, where the indexes c, n
mean cytosol and nuclear compartments.

We present here (see Fig.3) four simple models of the biochemical processes described above
(simpler than the models in the literature). The models differ by their complexity quantified by two
integers: the number of types of molecules and the number of chemical reactions. In the models the
reaction rates are given by the law of mass action. Thus, two parameters (kinetic constants) are
associated to each reaction. The dynamics of the models is given by the Eq.(2.1).

Any two models have nodes and reactions in common. Some of the models can be obtained one
from another by graph contractions. For instance M1 is a graph contraction of M2, which is a
graph contraction of M3. M1 is also a graph contraction of M4.

4.3 Parameter renormalization

We would like to know how the sets of parameters of the models should be related one to another.
First, we have to choose a property that we want to be shared by all models. A natural candidate for
this property is the set of steady states, defined from Eq.(2.1) as solutions of the equation f(X) = 0.

We say that two models are exactly renormalizable if for each set of parameters k of one model
there is a set of parameters k′ of the other model such that at steady states the values of the
concentrations in the common nodes are the same for the two models (notice that k′ may not be
uniquely determined).
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Figure 4: Oscillations of NFκB following a signal. a) Notice the huge amplitude and low damping predicted
by M3 and the similarity of the dynamical responses for M2,M4. All models have the same statical response
(attractors in the same positions). b) Sustained oscillations of M3.

We can show that M1, M2 are exactly renormalizable, also M2, M3. For instance, in order to
pass from M3 to M2 one has to eliminate the variable X5. After elimination the obtained steady
state equations have exactly the same form as the equations defining steady state of M2, provided
that k′3 = kvk−6k3/(k−6 + k7), k′4 = k4 + kvk7k6/(k−6 + k7) (all other parameters being conserved).
Similarly, to pass from M2 to M1 one only needs to renormalize k3: k′3 = k3(k5/k−5)2.

Notice that after renormalization a model keeps its description as a reaction bipartite graph
and the reaction rates are still given by the mass action law. In general it is rare that two models
are exactly renormalizable. Several situations may occur: a) most frequently the mass action law
has to be replaced by other laws (by Michaelis-Menten law for instance) b) the equality of steady
states is only approximate and the degree of approximation depends on the values of parameters k
(quasiequilibrium, quasistationarity situations) [GK05] c) the rates depend on all molecules of the
model, not only on reactants and products [GDH04, MDMG99] d) the reaction graph representation
is lost [GK05].

Let us now compare the functioning of the models in the hierarchy. We focus on the the following
experiment. First, in the absence of signal we wait until all concentrations reach steady state values.
Then, a signal is applied and we wait for steady state again. We renormalize the parameters such
that the steady state concentrations are approximately the same for all the models.

The following behaviour is common to all the models: under signal the complex NFκB-IκB in
the cytosol is broken and the concentration of NFκB in the nucleus increases. Nevertheless, the
steady state can be reached with more or less damped oscillations. These oscillations mean that in
the presence of the signal the steady state is a focus (at steady state the eigenvalues of the Jacobian
have non-zero imaginary parts).

The period and the damping time are the absolute vales of the inverses of the imaginary and
the real parts of a pair of complex conjugate eigenvalues of the Jacobian, respectively. By changing
the parameters of the model, this pair of eigenvalues eventually crosses the imaginary axis in the
complex plane (Hopf bifurcation). Then, self-sustained oscillations occur (the steady state bifurcates
into a limit cycle). We have noticed that three parameters are critical for the oscillatory behaviour:
λ = k−5/k5 which is the ratio of the transport rates from and to the nucleus, kv which is the volume
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ratio between the nucleus and the cytoplasm, and C which is a conserved quantity in all the models
(C = X2 + X3 in M1, C = X2 + X3 + kvX4 in M2 and M3, C = X2 + X3 + kv(X4 + X6) in M4.
M1 undergoes no oscillations (there are no transport reactions), M3 can easily oscillate and even
produce self-sustained oscillations (see Fig. 4).

From Fig. 4 the minimal model that reproduces the experimentally observed oscillating behavior
is M2.

Certainly, there may be some smaller dimensional models that reproduce this behaviour, that
are not based on the mass action law or on reaction graphs. We would like to know how small these
can be.

In order to give an approximate answer to this question, we use the following remark: the models
M4 and M2 have a conservation law and by linear analysis we identify the presence of 3, and 1
rapid modes (more rapid than minutes and well separated by large spectral gaps from the other
modes), respectively. This suggests that a two dimensional model should be a good approximation
of the dynamics of models M2 and M4 for timescales longer than minutes. The model M3 that is
able to produce persistent oscillations has a conservation law and only one rapid mode (more rapid
than minutes); its approximate dynamics is three-dimensional.

4.4 Invariant manifold method

A general method to find the minimal dynamical representation of a model is the invariant manifold
method.

The invariant (positively invariant) manifold is a manifold embedded in a phase space with the
property that it is invariant under the flow, i.e., orbits that start out in the manifold remain in
it. If a low-dimensional invariant manifold can be constructed for a dynamical system, it allows
consistent model reduction by considering the low-dimensional system dynamics induced on it. A
typical system trajectory goes fast towards the manifold and after slowly along the manifold, thus
the system spends most of the time in its vicinity and the most interesting dynamical phenomena
happen there. Existence, stability and dimensionality of the invariant manifold depend on the
presence of a spectral gap in the symmetrized Jacobian in a region of the phase space (and can be
different from one region to another).

An overview and many examples of application of the invariant manifolds in physics and chemical
kinetics can be found in [GK05]. An application of invariant manifolds to metabolic systems was
reported in [RF01].

Computation of the invariant manifold or of its approximation for an arbitrary dynamical sys-
tem is a difficult task. Intrinsic low-dimensional manifold (ILDM) method based on the spectral
decomposition of Jacobian fields was developed in [UP92]. Based on an iterative method for solving
the invariance equation we developed recently the method of invariant grids for constructing discrete
invariant manifolds approximations [GKZ04]. Currently we are working on generalization of this
method and its application to biochemical dynamical models.

In [GKZ04] the idea of invariant flag was proposed in the context of the invariant grid construc-
tion, as such a hierarchical construction where invariant manifolds of lower dimension are embedded
into the invariant manifolds of higher dimensions. In practice, one-dimensional invariant grid is
constructed from a steady state and fixed to become the starting point for constructing the two-
dimensional invariant grid, and so on. This introduces a system of internal grid coordinates which
hierarchically separate the time scales: the first coordinate is the slowest, the second is the second
slowest, etc.

Reducing the dynamics of a complex system by proving that this is close to the low-dimensional
dynamics of a simpler system also helps to establish the correspondence between the two as well as
to determine the essential complex system parameters.
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5 Hierarchy and robustness

Let us consider that we managed to construct a function K ∈ Rn → f(K) expressing a certain
property P depending on the values of the parameters K = (K1,K2, . . . , Kn) of a model representing
the biological system. Let the parameters Ki, i = 1, . . . , n be random variables. The causes of
variability of the parameters can be multiple: mutations, across individual variability, variable
functional context, etc. Then, we can define two types of robustness of the property P :

• Robustness with respect to distributed variations, meaning that when Ki are independent, the
variance of f is much smaller than the variance of any of the parameters: V ar(f) << V ar(Ki).

• Robustness with respect to localized variations meaning that if all of the parameters, except a
few are constant, the variance of f is much smaller than the variance of any of the parameters:
V ar(f) << V ar(Ki), i ≤ r, V ar(Ki) = 0, i > r, r is small.

There are many causes of robustness of cellular processes. Kitano [Kit04] reviewed many of
them: feedback control (responsible for buffering, important in homeostasis), redundance (alterna-
tive mechanisms), modularity (autonomy of the modules). We discuss here another possible cause of
robustness that is intrinsically related to complexity and has to do with the large number of actors
in biological networks.

In simple words, a property of a biological system is robust if it results from the contribution of
many parameters, the contribution of each one of the parameters being small. The natural mathe-
matical framework for the study of such effects is the concentration of measure in high dimensional
metric measure spaces [Gro99].

Before entering into details let us show how this is connected to hierarchies. Let us consider
that we have an hierarchy of models, each one being obtained from an ”extended” model M0 by
renormalization operations. The extended model is the most complex one, that in systems biology is
the molecular level of biochemical reactions. Let K0 be the set of parameters of the extended model
and K the set of parameters of a less complex, reduced model M. The correspondence between the
set of parameters is performed by a many to one application K = RK0. The renormalization process
(model reduction) is intended to preserve a property P of the model K0 (which for the reduced model
M is f(K)), hence we can write P ≈ f(K) = f(RK0). Thus, properties of the extended model are
functions of many of its parameters, because parameters of the reduced model are functions of many
parameters of the extended model. We need conditions under which such functions ”concentrate”,
i.e. have small variability.

In Gromov’s theory the concentration has a geometrical significance: objects in very high dimen-
sion look very small when they are observed via the values of real functions (1-Lipschitzian). We say
that a metric measure space E has a gaussian observable diameter D if for any 1-Lipschitzian function
f : E → R and for any t > 0, the measure µ satisfies µ({x ∈ E||f(x)−mf | > t}) ≤ 2exp(−t2/2D2).
The observable diameters of spaces with positive curvature like the sphere, the cube, the simplex in
high dimension n converge to zero like 1/

√
n. This means that 1-Lipschtzian functions f defined on

such high-dimensional spaces concentrate on some central value mf . This represents an important
generalization of the law of large numbers and has many applications in mathematics.

In order to apply this theory in biology the difficult part is the construction of the function f
giving the property P . The few examples that we posses are cases when the concentration of f is
related to concentration properties of the order statistics.

If K1, . . . , Kn are random variables, the order statistics is the distribution of the values K(1) <
K(2) < . . . < K(n) which are the same values put in ascending order. When Ki are independent,
identically distributed variables with density, the distributions of K(i) are known [Leh75]. In partic-
ular when Ki are uniform on the interval [0, 1], one has V ar[K(s)] = s(n−s+1)/[(n+1)2(n+2)], that
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converges to zero like 1/n2 for fixed s. Thus, K(s) are robust with respect to distributed variations
of the variables Ki. They are also robust with respect to localized variations because variations of
less than s variables have limited effect on K(s).

These properties of order statistics have been used in [GR05] to prove the robustness of the
relaxation time of a linear network of chemical reactions.

Another example, also related to order statistics comes from morphogenesis. Early stages of mor-
phogenesis of Drosophila have been modeled by the Hopfield model (2.2). The stationary patterns
satisfy:

xi = λ−1
i σα(

n∑

j=1

Kijxj +
p∑

k=1

Tikmk(y)− hi) (5.1)

In the case α >> 1 (”sharp” gene interactions) the local steady states (at fixed y) can be labelled
by the subset S ⊂ {1, . . . , n} of genes that are activated. We can compute the stationary patterns
as solutions of the following binary programming problem[RV]:

∑

j∈S

K̃ij +
p∑

k=1

T̃ikmk(y) > 1, if i ∈ S,

∑

j∈S

K̃ij +
p∑

k=1

T̃ikmk(x) < 1, if i ∈ Sc.

(5.2)

where K̃ij = Kij/(λihi), T̃ik = Tik/hi, Sc is the complementary set of S, i.e. the set of inactivated
genes.

In the simple case of a single maternal gradient m(x) monotonic in x, the pattern is made of
bands. Each band is characterized by the subset S of activated genes and is limited by:

mS
1 (K, T ) < m(y) < mS

2 (K, T )

mS
1 (K, T ) = maxi∈S [(1−

∑

j∈S

K̃ij)/T̃i]

mS
2 (K, T ) = mini∈Sc [(1−

∑

j∈S

K̃ij)/T̃i]

(5.3)

If the numbers of genes in S and Sc are large, than the domain limits mS
1 (K, T ),mS

2 (K,T ) may
concentrate. This is a source of robustness of the pattern with respect to variations of the interaction
parameters between genes. Nevertheless, the pattern depends not only on the interaction parameters
but also is directly controlled by the maternal gradient m(y). When this gradient changes, all the
bands defined by Eq.(5.3) are deformed. Although their order in space is robust (this is not affected
by the variations of the maternal gradient as long as there is a single monotonic gradient), their
relative size can change. Other compensation mechanisms could be responsible for the stability of
the pattern with respect to the variations of the maternal gradient.

6 Conclusion

The mathematical techniques described in this paper define a strategy for the study of modules and
hierarchies in biology. The modular approach implies decomposing complex models into simpler
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submodels with good compositionality properties. This will facilitate the analysis of the mod-
els by transforming extremely complex molecular biological models into readable, well structured
constructs. The hierarchical approach implies creating a family of models situated at different com-
plexity levels. Renormalization is an important technique for standardizing parameters of models
with different complexities and for comparing their properties. New concepts such as variable and
minimal dynamical dimension issued from model reduction could provide useful insights into func-
tionality of the biological systems. Finally we showed how robustness can be quantified and proposed
a new kind of source of robustness.
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