Biological robustness:

cd Do TE SLI what do we learn from (mathematical) physics ?

Annick LESNE

Institut des Hautes Études Scientifiques (Bures-sur-Yvette)

systems epigenomics group http:// seg.ihes.fr

Functional robustness

robustness differs from stability

 \longrightarrow structural vs functional robustness

counter-intuitive role of noise

(statistical laws, stochastic resonance, dynamic flexibility)

Robustness ensuring survival in a changing environment, defining acceptable perturbations and viability domain.

Selection

- (i) dynamic selection vs (ii) natural selection
- (i) persistence between t and $t + \delta t$

(ii) reproduction with multiplication between t and $t + \delta t$

In living systems: a posteriori "design" through natural selection (achieving adaptation and co-evolution), yielding efficiency and robustness for a range of conditions and perturbations.

"Function" = short curt for a long evolutionary history(a posteriori optimization criterion : reproduction rate, fitness)

An exemple: the mitotic splindle

Robustness and networks

• robustness of network **structure**

(e.g. failures and attacks in scale-free networks)

- robustness of network **dynamics** (redundancy, emergence)
- **functional** robustness (regulatory networks)
- adaptability (plasticity)

Robustness vs adaptability

Balance between **robustness** and **adaptability**

 \longrightarrow Nested notions of robustness

Several scales (for perturbations, for responses)

Several layers (structural, functional, regulatory, adaptive ...)

Nested notions of robustness

Deterministic relationship F(X, Y) = 0, solution $X_F^*(Y)$ (i) value of the derivative $dX_F^*/dY = -F'_Y/F'_X$ (dynamic stability) (ii) variations $X_{F+\delta F}^*(Y) - X_F^*(Y)$ (structural stability) (iii) family $(F_a)_a$ and singularities in $X_{F_a}^*(Y)$ (scenario genericity)

Stochastic relationship described by a distribution P(X|Y)(i) width of P(.|Y) at fixed Y

(ii) sensitivity of P(.|Y) or its moments with respect to Y

(iii) genericity of the relation $Y \to P(.|Y)$ as a whole.

Conclusions and perspectives

A context-dependent notion $\label{eq:context-dependent}$

Basically, physics teaches us that biological robustness is different

Importance of specifying

- the investigated **feature** (what is expected to be robust?)
- the set of **perturbations**
- the relevant scales \mathbf{scales}

Notion of robustness profile (both adaptation and misadaptation)

A whole research direction: network dynamics (role of topology, local/global, redundancy ...)